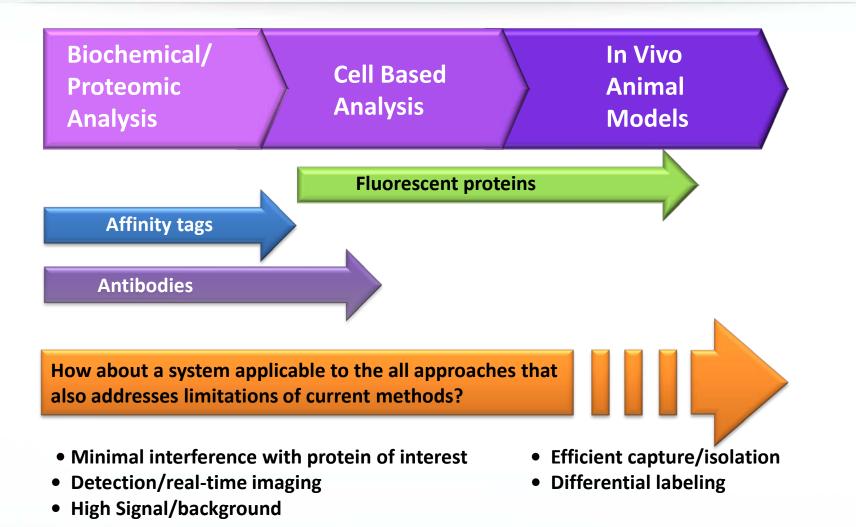
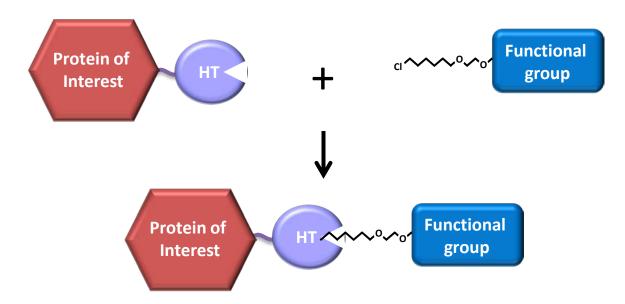
Overcoming Challenges of Protein Analysis in Mammalian Systems


Promega

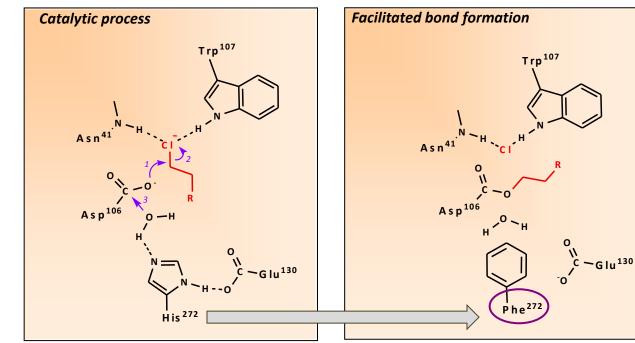
Danette L. Daniels, Ph.D.

Current Technologies for Protein Analysis



HaloTag Platform Promega **Biochemical**/ In Vivo **Cell Based Proteomic** Animal Analysis **Models Analysis Protein localization Protein purification** In vivo fluorescent imaging **Protein arrays Real time imaging Protein interactions Protein trafficking** Protein turnover **Fluorescent HaloTag**[®] HaloCHIP™ HaloLink™ HaloTag[®] **Pull-Down** Ligands **Protein:DNA Purification Protein Arrays**

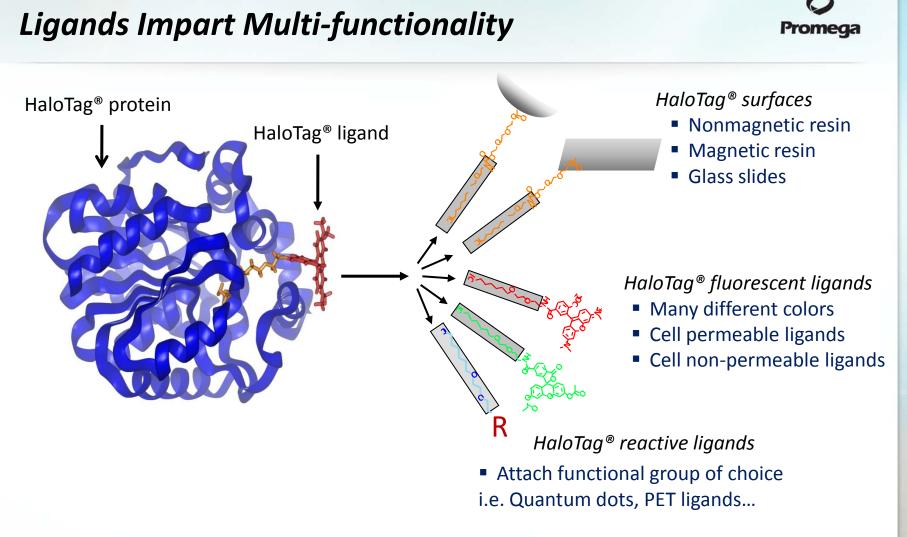
HaloTag is a Genetically Engineered Protein Fusion Tag


- A monomeric , 34 kDa, modified bacterial dehalogenase genetically engineered to covalently bind specific, synthetic HaloTag[®] ligands
- Irreversible, covalent attachment of chemical functionalities
- Suitable as either N- or C- terminal fusion

Mutagenized HaloTag[®] Protein Enables Covalent HaloTag[®]-Ligand Complex

<u>HaloTag[®]</u>

Hydrolase (DhaA)

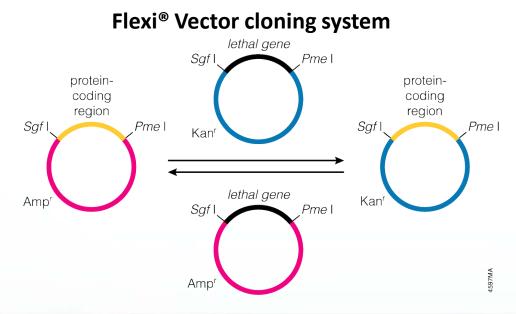

- DhaA is a rare, bacterial hydrolase.
- Binds to chloroalkane substrates.
- Forms a covalent intermediate.
- Activation of water by His drives hydrolysis.

HaloTag[®]:

- 34kDa protein
- Monomeric
- Single change: His272Phe for covalent bond.

Covalent bond:

- Stable after denaturation.
- Confirmed by Mass spec.


 Selectable functionalties: a single fusion construct may be attached to a broad range of functional properties

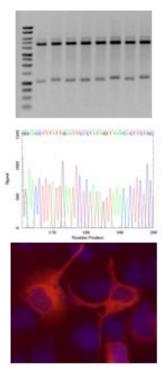
Generation of a N- & C-Terminal HaloTag® Fusions

Flexi vectors for expression of HaloTag fusions in mammalian cells:

Expression	Promoter	N-terminal HaloTag®	C-terminal HaloTag®
Maximal expression	CMV	pFN21	pFC14
Promoter deletion	CMVd1	pFN22	pFC15
series to optimize mammalian expression	CMVd2	pFN23	pFC16
level	CMVd3	PFN24	pFC17

- Flexible system for directional cloning that utilizes REs that are infrequent in ORFs
- Efficient transfer to multiple vectors
 Sequence once, transfer to many

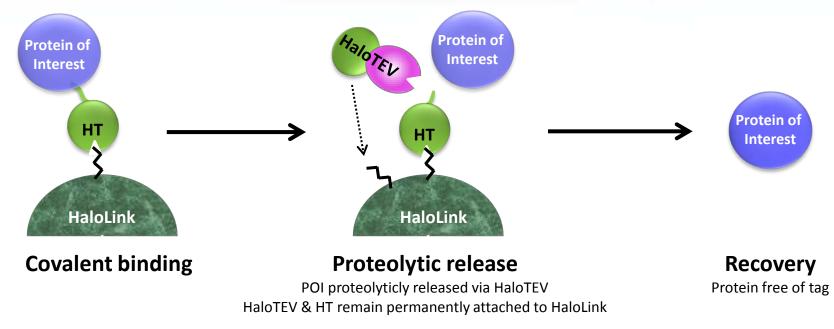
No Cloning Necessary


HaloTag[®]-Fusion Clones are Readily Available

Kazusa DNA Research Institute

Human ORFs N-terminal fusion constructs in Flexi[®] vector pFN21A for expression in mammalian cells <u>http://www.kazusa.or.jp/kop/dsearch-e//</u>

Features	Flexi-HaloTag Collection PID beginning with FHC as of Nov, 2010
Size of Collection	7,100 clanes
Fusion Tag	HaloTag ^e tor protein puritication, integing & interactions
Validated Clones	
>Sequence Validated	Yes (100% clones)
>Insert Validated	Yes (99.7% clones)
> Expression Validated	YES (99 &% clones)
> Localization Validated	Yes (80.1% clones)
Format	DNA
Typical Delivery	2-4 weeks
Price (\$USD)	\$500. ⁰⁰ per clane



GeneCopoeia

Human and mouse ORFs N- /C- terminal fusion constructs available in OmicsLink[™] vectors for expression in mammalian cells <u>http://www.genecopoeia.com/product/halo/</u>

HaloTag[®]-based Protein Purification Scheme

O Promega

Covalent binding:

- Efficient capture regardless of expression level
- Stringent washes possible
- Minimal loss of bound protein
- □ Streamlined protocol:
 - Proteolytic release coupled with protease & tag removal
 - One physiological buffer and no need for buffer exchange

Protein Purification from Mammalian Cells Efficient, Sensitive & Gentle

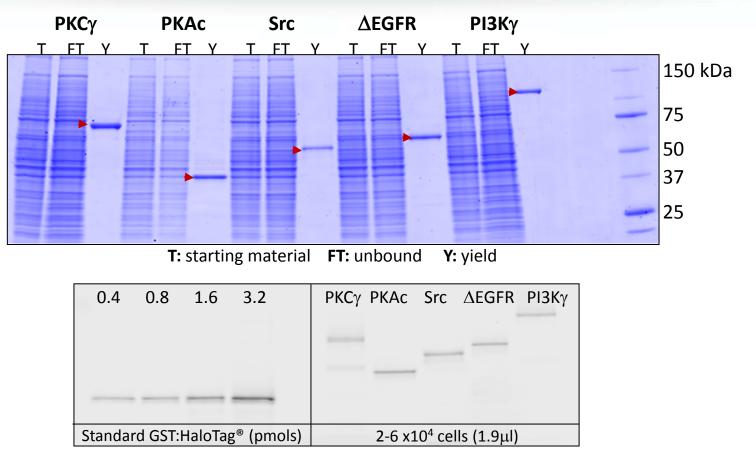
O Promega

Mammalian cells: high quality proteins

- Native environment
- Proper folding
- Protein processing
- Correct post-translation modifications

Low expression level : Low yields; Low recovery; Impurities

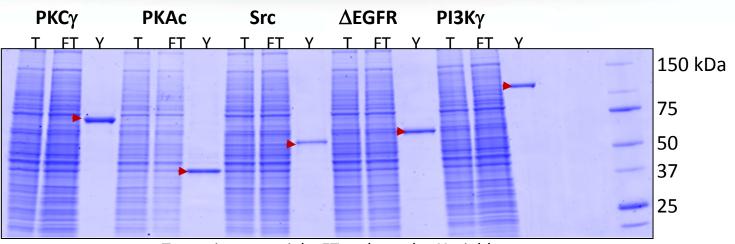
HaloTag[®]:


Selective & Covalent capture

- Efficient protein capture regardless of expression levels
- No loss of bound protein during washes

Rapid sensitive detection

• Optimization of expression levels


Purification of Human Kinases from Transient Transfected HEK293T Cells

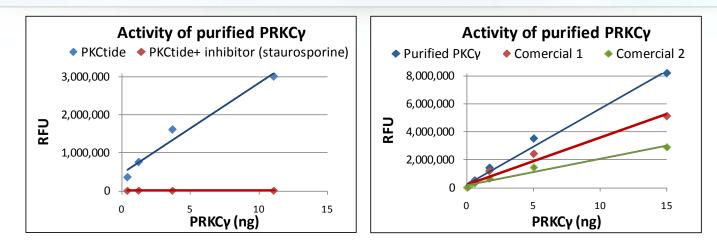
Protein standard and fusions were labeled with HaloTag[®] TMRDirect ligand

Ohana, R.F., et al. Prot. Exp. and Purif. (2011) 76, 154-64

Purification of Human Kinases from Transient Transfected HEK293T Cells

T: starting material FT: unbound Y: yield

Kinases	ΡΚϹγ	РКАс	SRC	∆EGFR	ΡΙЗΚγ
Estimated POI expression (µg)	289	159	181	177	247
Yield (µg)	244	140	137	167	221
% Recovery	84%	88%	76%	94%	89%

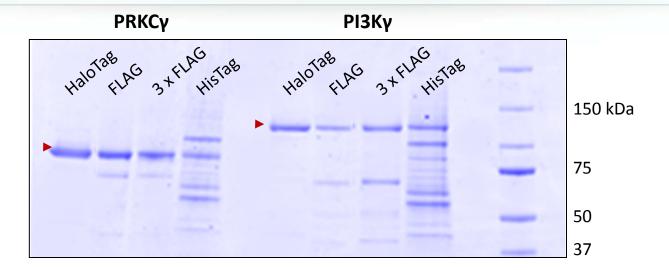

Highly efficient protein capture and recovery

Ohana, R.F., et al. Prot. Exp. and Purif. (2011) 76, 154-64

Promega

Purified Kinases are Highly Active

Kinase	Measured Specific activity (nmol/min/mg)	Reported Specific activity (nmol/min/mg)
ΡRKCγ	16,551	2,260
РКАс	9,670	8,580
Src	1,624	1,032
∆EGFR	196	101
ΡΙ3Κγ	233	39


Measured specific activities are in agreement with reported values

Kinase activity was assayed using ADP-Glo[™] assay

Ohana, R.F., et al. Prot. Exp. and Purif. (2011) 76, 154-64

Comparative Analysis with Other Affinity Tags

O Promega

Western analysis

HaloTag®	FLAG	3xFLAG	His ₆ Tag	
S FT Y	S FT Y	S FT Y	S FT Y	
РКСу				
	-			
ΡΙ3Κγ	ting material	T: unbound V:	vield	

T: starting material FT: unbound Y: yield

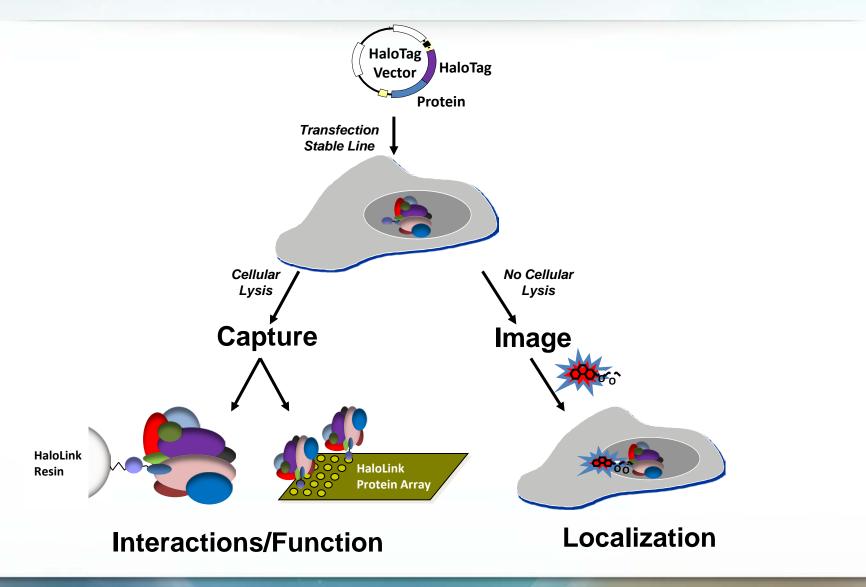
Protein recovery (%)

Tag	ΡΚϹγ	ΡΙЗΚγ
HaloTag®	86	88
FLAG	60	40
3xFLAG	52	58
His ₆ Tag	31	33

HaloTag[®]: Greater protein recovery Higher yields Higher purity Ohana, R.F., *et al. Prot. Exp. and Purif. (2011)* **76**, 154-64

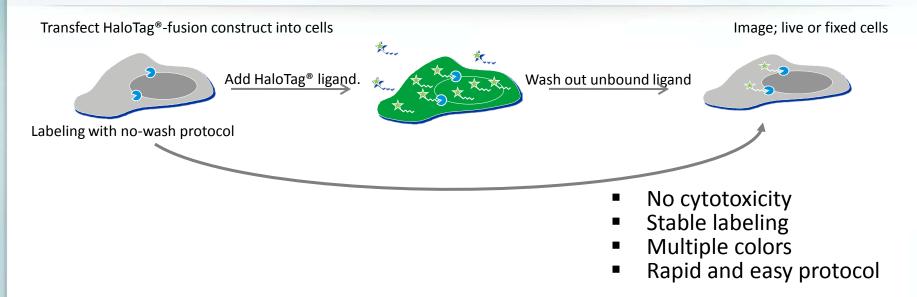
Summary: HaloTag®-Based Purification

O Promega

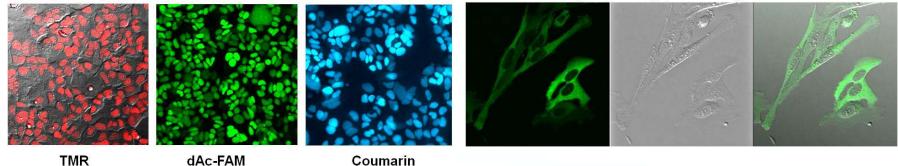

HaloTag[®]-based protein purification

- Highly efficient purification regardless of expression levels
- Greater yields, purity and recovery than traditional affinity tags
- Streamlined protocol for proteolytic release coupled with protease & tag removal
- One physiological buffer and no need for buffer exchange

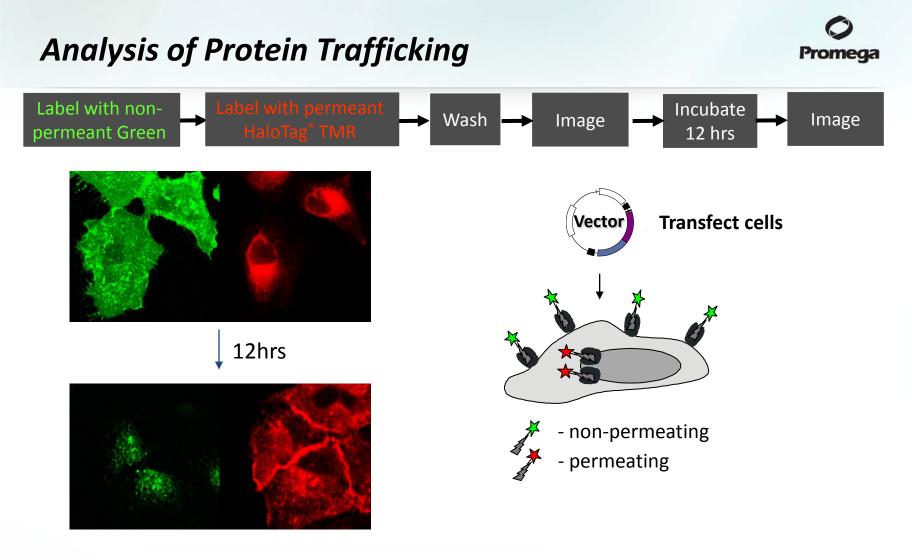
Simple to use fluorescent detection for rapid optimization of expression levels


Studying Intracellular Protein Function

Intracellular Protein Labeling and Imaging



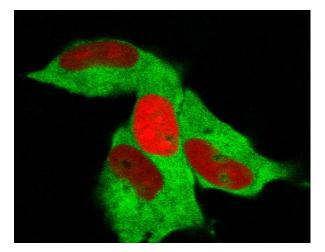
HaloTag[®]-NLS₃ fusion protein – HEK293 cells


dAc-FAM

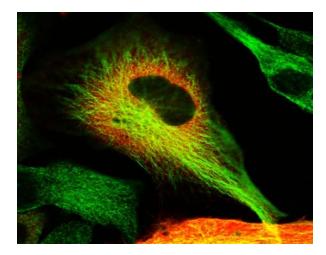
U2OS cells stably expressing p65-HaloTag.

All that is done with GFP can be done with HaloTag[®] and more...

Coumarin


- Spatial control of labeling.
- Follow protein trafficking of distinct protein pools.

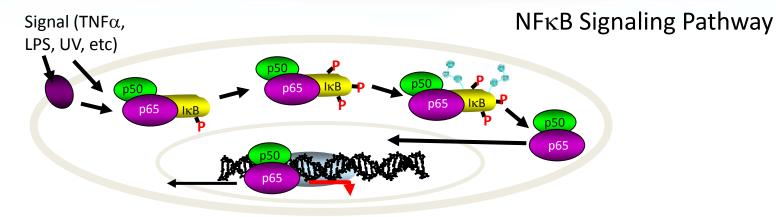
Svendsen, S., et al. BMC Cell Biol, 9: 17, 2008.

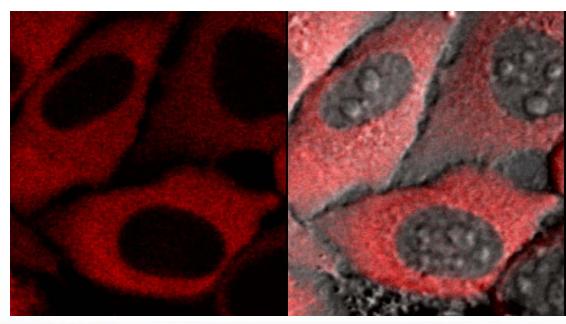

O Promega

Multiplexing with Other Labeling Technologies

 $hMGFP-\alpha$ -tubulin HaloTag[®]-NLS₃-TMR ligand

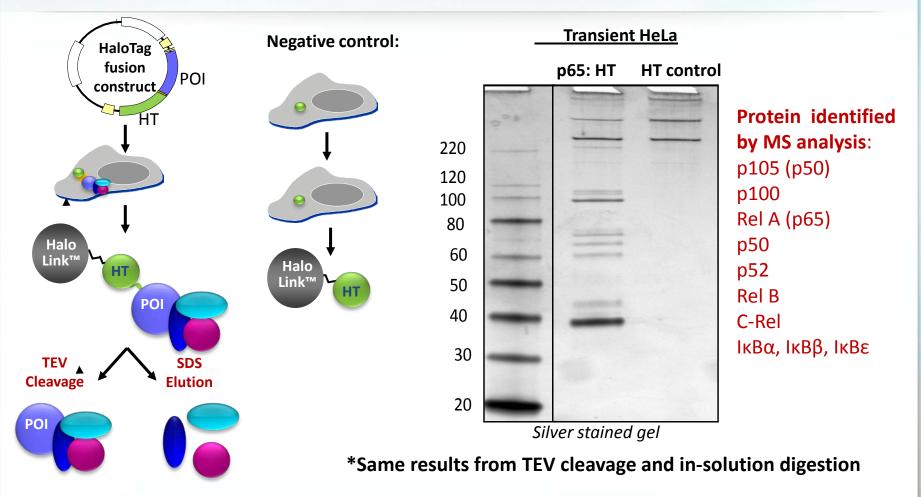
p65-HaloTag[®]-TMR Ligand Alexa 488 Ab




p65-HaloTag labeled withTMR Ligand fixed, then processed for ICC with anti- β -tubulin Ab and Alexa-488-conjugated secondary antibody

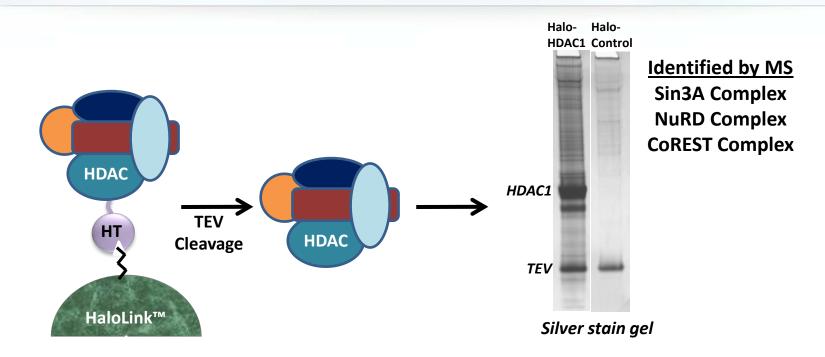
- HaloTag[®] is compatible with fluorescent protein fusions
- HaloTag[®] is compatible with fixing and antibody staining
- Labeling simultaneous with fixation also possible

Real-time Imaging



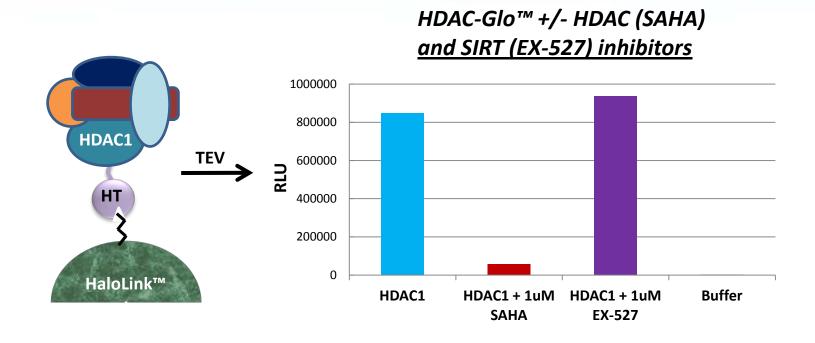
- HeLa cells expressing p65-HaloTag labeled with TMR Ligand
- Treated with $\mathsf{TNF}\alpha$
- Imaged (5min/frame; 120min)

Capture of Protein:Protein Complexes



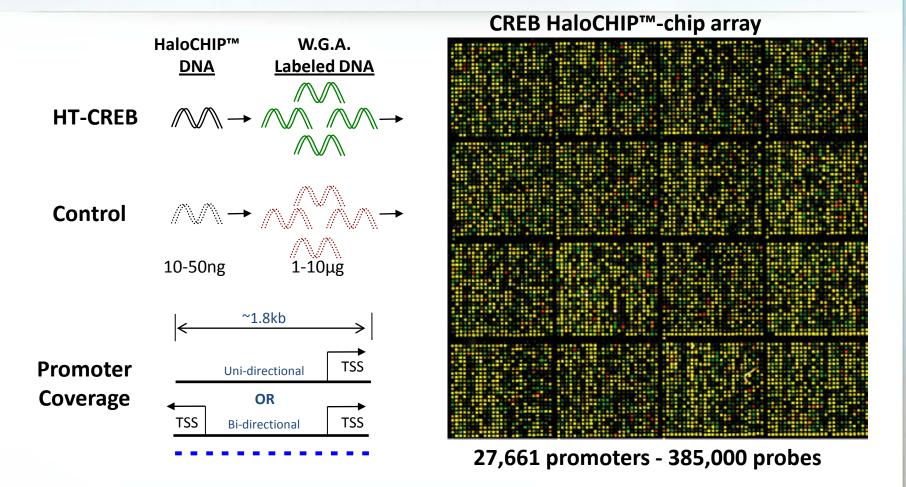
•p65-HaloTag specifically pull-down expected protein partners of the NFkB pathway

HDAC1 Complex Purification



- Expected HDAC complex capture as determined by Mass Spec
- TEV cleavage allows for HDAC complexes to be released in tact.
- Compatible with downstream functional analysis

Isolated HDAC1 Complexes Show Specific Activity

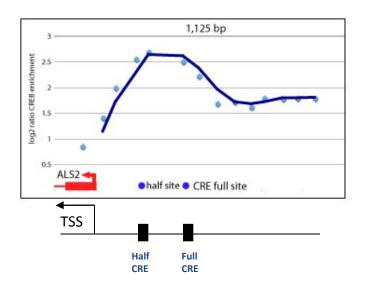


- Enrichment of specific HDAC activity from HDAC complex purification
- Able to screen effects of inhibitors on purified physiological complexes
- Overall technology extended to other epigenetic complex

Intracellular Protein:DNA Interactions -HaloCHIP™ **Controls** Expression of HaloTag[®] 1) (HT) Trxn. factor (TF) **Untransfected Cells** fusion protein. OR Block HaloTag[®] 2) Crosslinking, lysis, and binding sonication. 3) Covalent capture on Halo HaloLink[™] resin Halo Link™ Link™ followed by stringent washing. 4) Release of DNA by reversal of crosslinks. Sample DNA **Background DNA**

CREB HaloCHIP-chip genome wide analysis

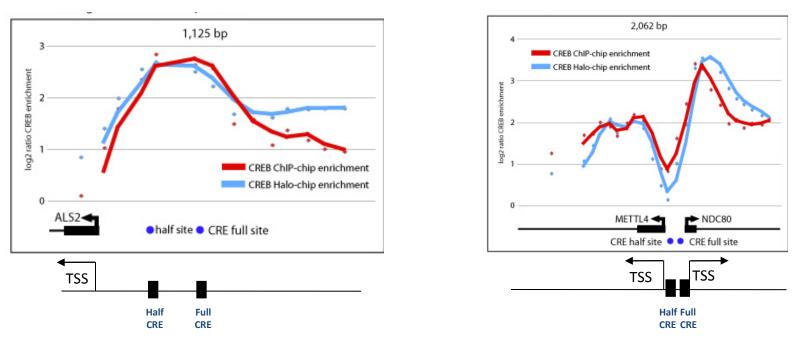
Hartzell, D.D., et al. BMC Genomics, 10: 497 (2009)


Gene Ontology (GO) and Promoter Analysis

CREB HaloCHIP™-ChIP Top 1% Promoters

Cellular Functions	<u># of Promoters</u>	<u>p-value</u>
Histone Assembly	12/65	1.26E-06
Chromatin architecture	20/261	7.63E-07
Ribonucleic Complexes	26/392	7.06E-07
RNA processing	26/395	8.01E-07
DNA metabolism	38/638	2.93E-08
Nucleic acid binding	110/2764	2.19E-09

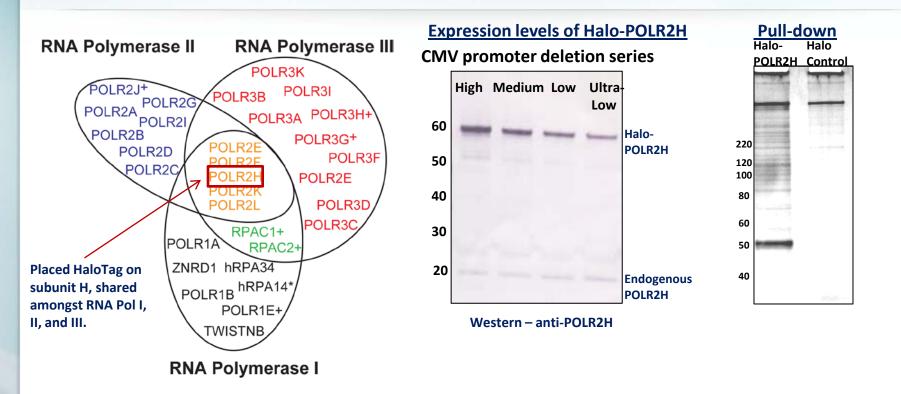
Promoter Binding Profile


- List of promoters all involved in processes CREB is known to regulate.
- Binding profile shows peaks binding above CRE consensus sites

Hartzell, D.D., et al. BMC Genomics, 10: 497 (2009)

HaloCHIP[™] and ChIP Binding Patterns

Uni-directional Promoter


Overlapping genomic binding patterns between endogenous CREB and Halo-CREB

•High percentage of bi-directional promoters showing downstream CREB binding

Bi-directional Promoter

Expression Studies and Isolation of Eukaryotic RNA Polymerases

- A CMV deletion series yielded HT-POLR2H expression over a 50-fold range.
- Pull-down performed for each in triplicate and analyzed by MudPIT mass spectrometry.

Qualitative Data from Triplicate Experiments – RNAP Subunits

	HI Control	-	HT Medium		
POLR1A		XXX		XXX	XXX
POLR1B		XXX	XXX	XX	XXX
RPAC1		XXX	XXX	XX	XXX
POLR1D		XXX	XXX	XX	XX
POLR1E		X	XX		Х
hRPA34		Х	XXX	X	XXX
TWISTNB		Х	Х	Х	
ZNRD1		XX	XX	Х	Х
POLR2A		XXX	XXX	XXX	XXX
POLR2B		XXX	XXX	XX	XXX
POLR2C		XXX	XXX	XX	XXX
POLR2D		XXX	XXX	XX	XXX
POLR2E		XXX	XXX	XX	XXX
POLR2F		XX			
POLR2G		ХХХ	XXX	Х	ХХ
		ХХХ	XXX	ХХХ	XXX
POLR2I		ХХХ	ХХ	Х	ХХ
POLR2J		ХХХ	XXX	ХХ	ХХ
POLR2K		Х	Х		Х
POLR2L		ХХХ	XXX	Х	ХХ
POLR3A		ХХХ	ХХХ	ХХ	ХХХ
POLR3B		ХХХ	XXX	Х	XXX
POLR3C		ХХХ	XXX		Х
POLR3D		ХХХ	XXX	XX	ХХ
POLR3E		ххх	XXX	Х	ХХ
POLR3F		ххх	XXX	Х	ХХХ
POLR3G		ххх	ххх	х	Х
POLR3G-					
LIKE		XX	XX		х
POLR3H		Х	XXX		
POLR3I		ХХ	ххх		Х
POLR3K		ХХХ	xxx	Х	XXX
1179	0 of 31	31 of 31	30 of 31	24 of 31	28 of 31

Number of hits out of 3 replicates

	0 of 3
Х	1 of 3
XX	2 of 3
XXX	3 of 3

 Excellent subunit recovery across CMV deletion series

Overall recovery out of all possible subunits.

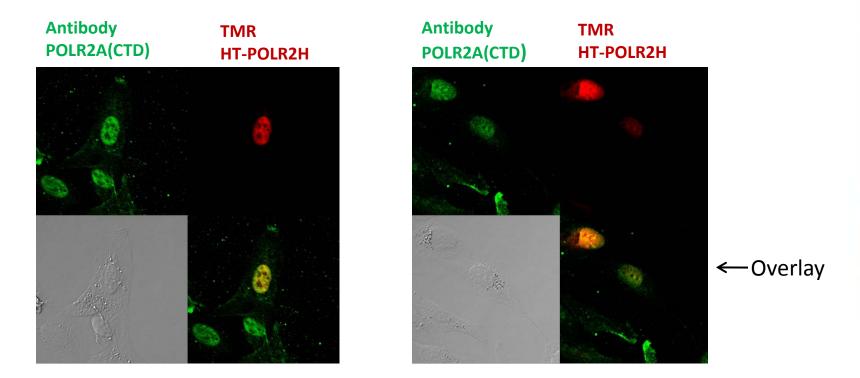
Confidential and Proprietary. Not for Further Disclosure.

Comparison with FLAG-POLR2H

Acronym	HT-POLR2H	HT Control	FLAG-POLR2H	FLAG Control	
POLR1A	XXX		XX		Ν
POLR1B	XXX		Х		R
RPAC1	XXX		XXX	XX	Ν
POLR1D	XXX				
POLR1E	Х				ir
hRPA34	х		XX		
TWISTNB	X				
ZNRD1	XX				
POLR2A	XXX		XXX	Х	
POLR2B	XXX		XXX		
POLR2C	XXX		XX		
POLR2D	XXX		Х		
POLR2E	XXX		Х		
POLR2F	XX				
POLR2G	XXX				
POLR2H	XXX		XXX		
POLR2I	XXX				
POLR2J	XXX				
POLR2K	Х				
POLR2L	XXX				
POLR3A	XXX		Х		
POLR3B	XXX				
POLR3C	XXX		Х		
POLR3D	XXX		XX		
POLR3E	XXX				
POLR3F	XXX				
POLR3G	XXX				
POLR3G-LIKE	XX				
POLR3H	X				
POLR3I	XX				
POLR3K	XXX				

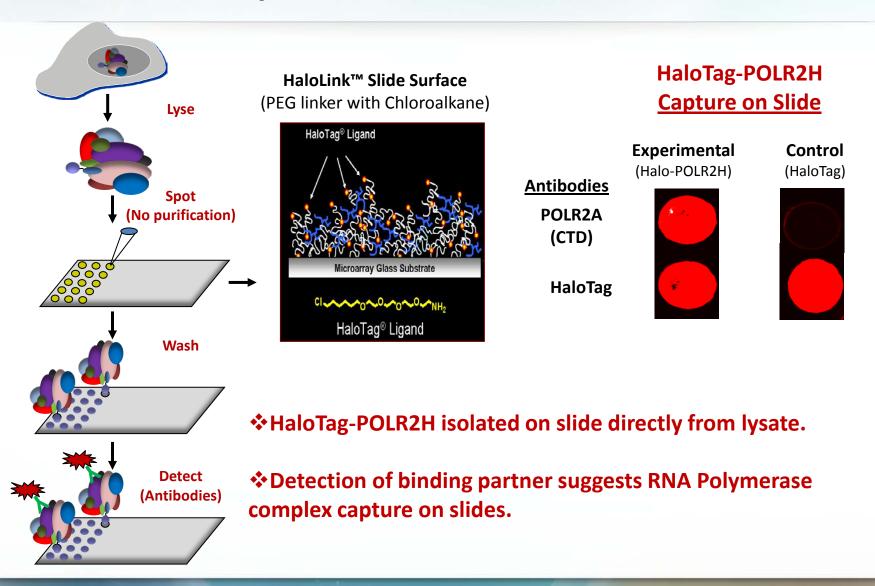
Number of times core RNAP subunits identified by MudPIT analysis in triplicate experiments.

0 of 3
1 of 3
2 of 3
3 of 3


X X

- Improved recovery with HaloTag
- Higher reproducibility
- Lower background

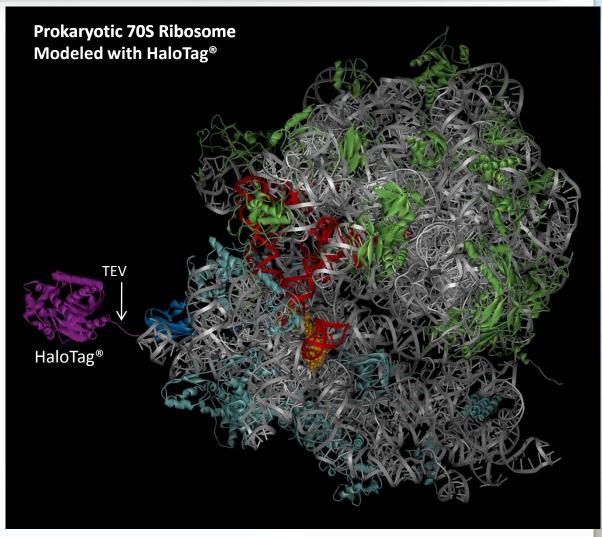
Imaging of HaloTag®-POLR2H


Co-localization with Endogenous POLR2A

- HaloTag-POLR2H is properly localized to the nucleus.
- Co-localization with antibody specific to the CTD of POLR2A.

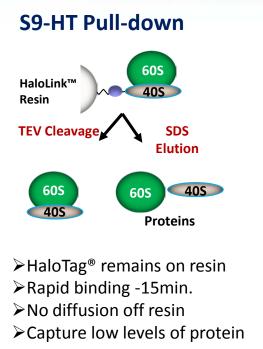
Oriented Capture of HaloTag-POLR2H on HaloLink™ Arrays

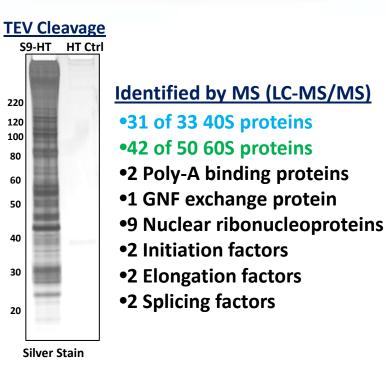
Isolation of the Ribosome

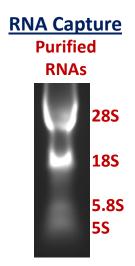

> One of the largest macromolecular machines.

➢ Highly abundant.

➢ Many interacting partners, mRNAs.

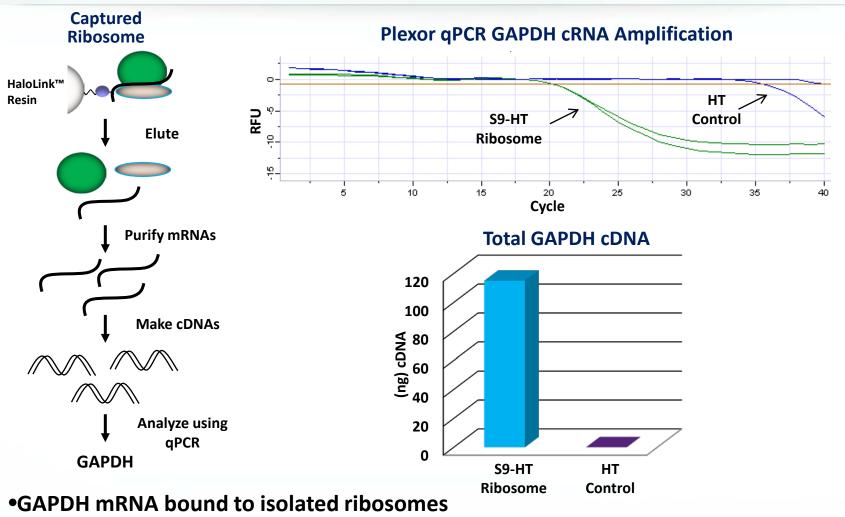

Difficult to capture using a single protein fusion tag.


Placed HaloTag[®] on 40S subunit protein, Human RPS9.



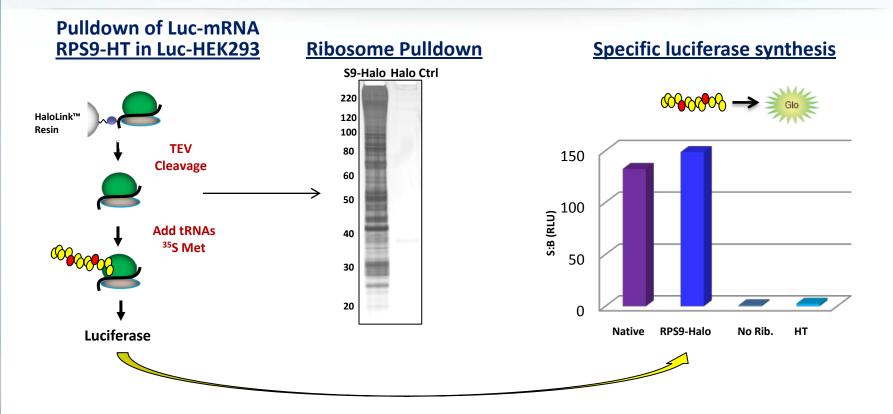
Selmer et al. (2006) Science **313**, 1935 pdb:2j00 and 2j01 – 70S Ribosome

Capture of Eukaryotic Ribosomes Using S9-HT



- Purified the 80S ribosome with single step from HeLa cells.
- Efficiently cleave complex from resin with TEV protease.

Isolated Ribosomes are Bound to mRNAs



•Potential for complete mRNA analysis.

Isolated Ribosomes are Active for Translation

O Promega

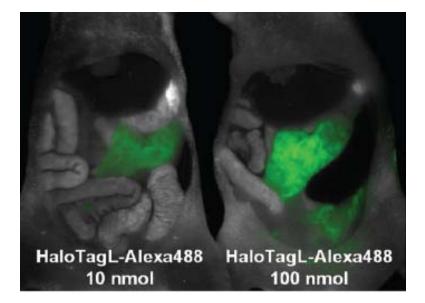
- Ribosomes which have incorporated RPS9-Halo are active for elongation.
- Bound to Luc-mRNA and can translate functional luciferase protein.

Monitoring Ribosomal Trafficking and Populations Promega Serum Starve Pulse Serum Chase Image Wash **RPS9-HT** TMR Label Recovery **Green Label Overlay Old population New population** Old and new 3hr 24hr OR 24hr

•Newly synthesized ribosomal proteins localized to nucleoli 3hrs post-stress.

•After 24hrs of recovery, ribosomal populations re-localized to cytoplasm.

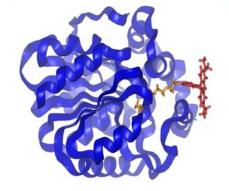
HaloTag[®] Platform

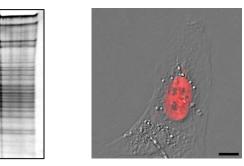


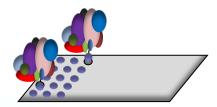
- In vivo fluorescent imaging
- Future directions

In Vivo Imaging

Fluorescent *in vivo* imaging using HaloTag[®] technology allows for development of imaging ligands


- PET
- near IR


Summary



• Evolved HaloTag[®] protein for specific, covalent, and rapid binding.

- HaloTag[®] technology shows strength and advantages for a variety of mammalian applications:
 - Protein purification
 Capture on surfaces
 Protein:DNA interactions
 Protein complex isolation
 Cellular and in vivo imaging

